Quasi-isometric rigidity for graphs of virtually free groups with two-ended edge groups
نویسندگان
چکیده
Abstract We study the quasi-isometric rigidity of a large family finitely generated groups that split as graphs with virtually free vertex and two-ended edge groups. Let G be group is one-ended, hyperbolic relative to abelian subgroups, has JSJ decomposition over subgroups containing only are not quadratically hanging. Our main result any abstractly commensurable . In particular, our applies certain “generic” HNN extensions cyclic subgroups.
منابع مشابه
Quasi-isometric rigidity of solvable groups
In this article we survey recent progress on quasi-isometric rigidity of polycyclic groups. These results are contributions to Gromov’s program for classifying finitely generated groups up to quasi-isometry [Gr2]. The results discussed here rely on a new technique for studying quasi-isometries of finitely generated groups, which we refer to as coarse differentiation. We include a discussion of ...
متن کاملCubulating Graphs of Free Groups with Cyclic Edge Groups
We prove that if G is a group that splits as a finite graph of finitely generated free groups with cyclic edge groups, and G has no non-Euclidean Baumslag-Solitar subgroups, then G is the fundamental group of a compact nonpositively curved cube complex. In addition, if G is also wordhyperbolic (i.e., if G contains no Baumslag-Solitar subgroups of any type), we show that G is linear (in fact, is...
متن کاملFinite automata for Schreier graphs of virtually free groups
The Stallings construction for f.g. subgroups of free groups is generalized by introducing the concept of Stallings section, which allows an efficient computation of the core of a Schreier graph based on edge folding. It is proved that those groups admitting Stallings sections are precisely f.g. virtually free groups, through a constructive approach based on Basse-Serre theory. Complexity issue...
متن کاملQuasi-isometry rigidity of groups
2 Rigidity of non-uniform rank one lattices 6 2.1 Theorems of Richard Schwartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Finite volume real hyperbolic manifolds . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crelle's Journal
سال: 2021
ISSN: ['1435-5345', '0075-4102']
DOI: https://doi.org/10.1515/crelle-2021-0067